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Sequential random close packing of binary disc 
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Colney Lane, Norwich NR4 7UA,  UK 

Received 11 July 1988 

Abstract. We present large computer simulations of the sequential random close packing of 
binary disc mixtures. The growth mechanism is representative of gravity deposition in two 
dimensions. The details of the composition dependence of the close-packing fraction are 
related to the form of the structural phase diagram and to the network formed from disc 
contacts. Limits are placed on the validity of random close-packing models for binary disc 
mixtures. 

1. Introduction 

The structures and patterns which are produced by packing discs and disc mixtures in a 
plane are interesting from many points of view. Random packings made from mixtures 
of unequal-size discs have been used as models for amorphous and granular materials 
[l], as examples of systems which contain a controlled amount of disorder and exhibit 
complex defect structures [2] and as prototype porous media. Close-packed discs are 
used as the starting point for investigations of size segregation [3], sediment structure 
[4], trickling flows [5]  and sifting phenomena. It is therefore important to establish 
detailed data concerning the bulk and structural properties of random aggregates formed 
from hard-disc mixtures. We shall present results, obtained by computer simulation in 
a strip geometry, for aggregates built by sequential addition of hard discs under the 
action of a strong unidirectional external force. This growth mechanism is relevant for 
many experimental configurations involving gravity-controlled deposition. 

In [6] experimental non-sequential two-dimensional close packings of binary hard- 
disc mixtures were constructed and an approximate composition independence found 
for their average geometrical properties such as the packing fraction and average 
coordination number. Our computer simulation results for binary hard-disc mixtures 
show a small systematic dependence of random close-packing fraction c on the ratio 
r = R1/R2 G 1 of disc sizes and the volume fraction x of the smaller discs. Two-dimen- 
sional arrays of hard-disc mixtures generated sequentially and deterministically from a 
seed cluster [2] have a phase diagram which includes a region of ‘hexatic’ configurations, 
i.e. configurations of sixfold-coordinated discs with short-range translational order 
and long-range orientational order. Similar assemblies constructed using a sequential 
minimum-energy criterion with discs which interact via a short-range pair potential [7] 
have a very complex phase diagram which also includes regions which correspond to 
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sixfold-coordinated discs. In contrast, the results which we shall present for aggregates 
built, using a local minimisation of potential energy, under the influence of a uni- 
directional external field are dominated by fourfold-coordinated configurations. 

Disordered packings of hard discs in a plane present a complex theoretical problem 
in statistical geometry which is most clearly expressed in terms of the network of disc 
contacts [6]. The network is constructed by connecting the N disc centres by bonds 
through points of contact between two discs. The average number of contacts per disc 
is the coordination number z .  If the aggregation of discs is stable, as is the case for 
packings constructed under the action of an external field, each disc has at least two 
contacts and the contact network is fully connected so that it forms a set of polygons 
which fill the space. (The polygons may be concave.) Polygons with n sides and average 
area A ,  occur with probabilityp,. The setp,, n C N ,  is constrained by normalisation and 
Euler topology so that we can write [8] 

X P n = l  (n  > 2) 
n 

22 - ( z  - 2 )  IZP, = 0. 
n 

The packing fraction can be written 

where (R2)  is the mean squared radius of the component discs. In addition the network 
of disc contacts is constrained by its origin as a stable hard-disc packing. The formulation 
and expression of these extra ‘steric’ conditions is crucial for further understanding of 
the hard-disc packings. 

2. Two-dimensional random close packing 

The statistical properties of random disc packings depend not only on the details of the 
sample composition but also on the particular method used to form the packing and on 
the nature of contacts between particles. We wish to represent the slow deposition of 
hard frictionless particles in the presence of a strong gravitational field and therefore we 
use an irreversible ballistic particle-cluster aggregation model in which the incoming 
particles continuously reduce their potential energy along a trajectory made from a 
series of linear ‘free-fall’ and circular-arc ‘rotation’ sections. The adsorption event is 
completed when the disc reaches a local potential energy minimum. We may imagine 
smooth coins sliding down an inclined plane to form a disordered packing. 

Our investigations have been limited to two dimensions for computational con- 
venience. There has been much theoretical interest in the two-dimensional problem 
both fundamentally and as a prototype for the study of three-dimensional disordered 
packings [9]. In addition the two-dimensional analysis is appropriate for experimental 
configurations such as packed buoyant spheres or coaxially stacked cylinders (see, e.g., 

We have performed sequential packing simulations in a semi-infinite strip of width 
L which has an impermeable base line at height h = 0. Periodic boundary conditions are 
applied in the horizontal direction. The packing algorithm represents unidirectional 

[101>. 
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deposition with multiple restructuring. A disc is introduced at h = with a random 
lateral coordinate and moves parallel to the strip until it makes contact with either the 
base line or with another disc (the object disc) which is already part of the aggregate. In 
the first case the disc aggregates at the point of contact. On contact with the aggregate 
the incident disc remains in contact with the object disc but rotates around it so as to 
reduce the h-coordinate of its centre. Rotation proceeds until either the incident disc 
simultaneously contacts a second aggregated disc (forming a three-disc configuration) 
or it reaches a position where incident and object disc centres are at the same height. 
From the latter position the incident disc re-enters the free-fall mode along a different 
path parallel to the strip. Three-disc configurations are either stable, i.e. the lateral 
coordinate of the incident disc centre lies between the centre coordinates of the two 
contacted discs, or unstable in which case the second contacted disc becomes the object 
disc and a new rotation phase begins. In general, there may be any number of free-fall 
and rotation phases before the incident disc finds a stable aggregation position but, in 
practice for r > 0.25, the active growth region is only a few disc diameters thick. This 
observation is essential when constructing computer-simulated disc aggregates con- 
taining very large numbers of particles. 

It is valuable to compare this growth process with a similar one used in [ll] (model 
111) to study multiple restructuring effects in random deposition of monosize discs. The 
two algorithms diverge at the point, during a rotation phase, at which the centre of the 
incident disc attains the same height as that of the centre of the object disc. At this point 
the model I11 incident particle continues its rotation path until either it aggregates or it 
contacts a second aggregated disc and then engages further rotation phases. In our 
approach the incident disc enters a new free-fall phase of its aggregation trajectory. For 
purely monodisperse discs these two routes result in identical stable aggregated disc 
configurations. However, for polydisperse discs, where stable configurations with over- 
hanging discs are permissible, different final configurations may result from the two 
methods. It has previously been recognised in [ 111 and, for example in [ 121, that packing 
simulations performed on digital machines are inherently polydisperse, to the extent 
that disordered packings are produced even when initialised with a crystalline seed 
cluster, so that the results of the two algorithms above inevitably correspond to different 
growth processes. 

3. Results and discussion 

We shall label binary disc mixtures by coordinate pairs (x, r )  and, for a particular 
mixture, we shall express all lengths in terms of the diameter of the largest disc. It is for 
this reason that smaller L-values are appropriate for simulations where the mixture has 
high x-values and small r-values. Our simulations have been performed on a Vax 11/ 
785 computer using pseudo-random numbers generated by a NAG library FORTRAN 
subroutine. Each simulation was performed M times, 5 G M G 60, using independent 
sequences of random numbers to provide an estimate of statistical errors. Packing 
fractions have been estimated from the central 90% of the occupied volume in order to 
minimise the effect of the hard base and the upper free surface. 

For monodisperse particles (x, l), it was found in [11] that very-large-scale simu- 
lations give ambiguous results for the packing fraction. In table 1, we have listed packing 
fractions obtained at selected points in the (x, r )  plane and, in each case, from simulations 
performed at three different sizes. It is clear that a complex size dependence occurs in a 
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Table 1. Packing fraction for sequential random close packing of binary disc mixtures in a 
strip geometry. 

N = 2 x 1 0 4  N = 1 0 5  N = s x 105 
L = 50 L = 160 L = 400 

X r M = 5 0  M =  10 M = 5  

1.00 1.0 
0.99 0.5 
0.90 0.9 
0.90 0.5 
0.70 0.75 
0.70 0.5 
0.50 0.9 
0.50 0.5 
0.50 0.375 
0.30 0.75 
0.30 0.375 
0.10 0.9 
0.10 0.375 
0.01 0.94 
0.01 0.5 

0.8220(60) 
0.8177(34) 
0.8134(8) 
0.8147(8) 
0.8122(6) 
0.8155(7) 
0.8128(6) 
0.8 143 (8) 
0.8218(13) 
0.8110(5) 
0.8167(12) 
0.81 35( 8) 
0.8123(9) 
0.8221(50) 
0.8126(8) 

0.8190(46) 
0.8153(10) 
0.8136(2) 
0.8153(5) 
0.8123(1) 
0.8157(2) 
0.8129(3) 
0.81 43( 8) 
0.8192(5) 
0.8 l09( 2) 
0.8176(2) 
0.8133(1) 
0.8 126( 2) 

0.8 125( 2) 
0.8185(26) 

0.8177( 26) 
0.8138(5) 
0.813S( 1) 
0.8150( 1) 
0.8123( 1) 
0.8155(1) 
0.8128(1) 
0.8153(2) 
0.8202(2) 
0.8109(1) 
0.8173( 1) 
0.8133(1) 
0.8126( 1) 
0.8193(12) 
0.8124( 1) 

2 4 6 8 
N 

Figure 1. Packing fraction plotted against the 
number of discs for sequential random close pack- 
ing: curve A, monosize discs; curve B,  binary disc 
mixture withx = 0.7, r = 0.5. 

small region of the (x, r )  plane which is close to the edges of the unit square and also for 
low-r and high-x mixtures. In the size-dependent region, c is dependent both on system 
size L and on the number Nof particles in the packing. The Ndependence of the packing 
fraction, for L = 500 and N < lo6,  is illustrated in figure 1 for two of the systems used in 
table 1. The variation in packing fraction for monosize discs is consistent with that 
obtained previously in [ll] where a slightly different algorithm was used. For r = 0.5, 
x = 0.7, the packing fraction is approximately independent of N ,  for N > 2 x lo4. 

Correlations of the particle positions in a binary disc packing can be measured by the 
structure function S(q) where 

1 
S(q) = - 2 exp(iq ri) (3.1) N i  

and rj ,  j = 1, N ,  are the positions of the disc centres. We have performed the summations 
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Figure 2. (a )  Phase diagram for sequential random close packing of binary disc mixtures in 
a unidirectional external field; ( b )  diffraction pattern for typical X-type configuration; (c) 
diffraction pattern for typical S-type configuration; (d )  diffraction pattern for typical A-type 
configuration. 

in equation (3.1), over samples of approximately 5 x lo3 disc positions extracted from 
the centre of larger binary disc packings, for an appropriate range of q-values at each of 
36 positions in the (x, r )  plane. Representative maps of S(q), i.e. diffraction patterns, 
are constructed by placing a single dot at the end of those q-vectors for which S(q) is 
above a threshold value. The results are summarised in figure 2. The phase diagram in 
figure 2(a) can be divided into three regions each characterised by a different set of 
features in the corresponding diffraction patterns. Three typical patterns, denoted by 
the letters X, S and A ,  are illustrated in figures 2(b)-2(d). 

X-type diagrams (figure 2(b)) are strongly anisotropic, with approximate twofold 
symmetry. Diffuse diffraction spots on the axes indicate translational order over a few 
disc diameters in these directions and their asymmetric displacements indicate that the 
neighbour distances are larger in the unique direction of the external field. A sharper 
pattern oriented at 45" to the major axes shows strong translational order in these 
directions. Although these patterns have features in common with those obtained from 
crystalline samples, long-range order (which would be apparent from sharp spots in the 
diffraction pattern) has not been observed in close-packed assemblies of discs formed 
randomly in an external field. 
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r andx = 0.9 (U). 

0.812- - I 0 x 4  4, Figure 3. Packing fraction, from computer simu- 
lation, plotted against size ratio for sequential 
random close packing of binary disc mixtures with 

x o .  
I : .  

O o o .  . O  

L , x = O.l(O).x = 0.3(O),x = O.j(x).x = 0.7(+)  0.40 0.55 0.70 0.85 

At lower values of r ,  slightly more disorder is introduced into the disc packings and 
S-type diffraction patterns (figure 2(c)) are produced. The features of S-type patterns 
are more diffuse, indicating an overall reduction in position correlation, but they remain 
anisotropic with average fourfold symmetry. Axial correlations are strongly reduced 
and the patterns at 45” are radially broader than the corresponding features in the X- 
type patterns. We may conclude that, in these configurations, translational correlations 
along the (1, 1) directions die out rapidly but that these orientations are always the 
preferred ones for neighbouring pairs of discs. 

Finally A-type patterns are diffuse and isotropic, indicating a total absence of particle 
correlations other than approximate ‘shells’ of near neighbours. The corresponding 
configurations can be considered to be amorphous. 

It is difficult to assign a precise meaning to the boundaries which can be drawn 
between X, S and A regions in figure 2(a) but the overall appearance shows a strong 
resemblance to the phase diagram, given in [2], of binary disc mixtures close packed 
according to the Bennett algorithm. In both cases a region, at low r, of isotropic 
disordered configurations is separated from a region in which the configurations show 
translational and orientational order, i.e. crystalline order, by a region in which orien- 
tation effects dominate. (Note that much of the size disparity between the region of 
hexatic configurations in [11] and our region of S-type configurations is due to the 
different labels for the x axis, i.e. number and volume fractions, respectively.) The 
striking difference between the configurations produced by the two methods, i.e. the 
predominance of sixfold configurations in [11] and of fourfold configurations here, is 
due to the unidirectional deposition which we have used. The ‘deterministic’ nature of 
the Bennett algorithm leads to a stronger ‘crystalline’ ordering in the region r = 1. 

Inspection of table 1 shows that, for the phase points which we have tested, the size 
dependence of the packing fraction is associated with X-type ordering and with low-r 
high-x configurations. Therefore we have made a systematic computer simulation study 
of the packing fraction of close-packed binary disc mixtures whose phase point is in the 
workable S and A regions in figure 2(a). In figure 3, we have plotted packing fraction c 
against size ratio r for five mixture compositions. Data points have been obtained from 
simulations with either L = 60, N = 2 X lo4 and M = 50 or from L = 160, N = lo5 and 
M = 10. Statistical errors are typically about 0.0005. 
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The data sets for x = 0.1-0.7 show well defined minima in the region 0.5 < r < 0.75 
whereas for x = 0.9, in the range of Y we have considered, c increases monotonically 
with decreasing r.  This behaviour can be understood as follows. At a fixed volume 
fraction of smaller discs, their number fraction is increased by decreasing the size ratio 
s. Thus, initially, decreasing r from unity at fixed x leads to increased disorder located 
at each small disc site and to an increase in the number of such sites. Both effects break 
up correlations between the larger-disc positions and therefore reduce the packing 
fraction of the assembly. However, although further decrease in r continues to increase 
the disorder located at individual impurity sites, for small-r and large-x configurations 
which contain very large numbers of smaller discs, the build-up in position correlations 
of the smaller discs offsets the disordering effect of size discrepancy and gives a cor- 
responding increase in the packing fraction. This effect is responsible for the size- 
dependent effects at small r and large x. This mechanism explains the relative position 
of the minima in figure 3 and would suggest that, without a transition to the X-type 
structure, the x = 0.9 configurations would show a shallow minimum in packing fraction 
for 0.8 < r < 1.0. 

For the majority of packings which we have constructed, the packing fraction is 
significantly smaller than the uniform value, c = 0.84 2 0.02. proposed in [6], for exper- 
imental non-sequential close packings of binary disc mixtures. The smallest value of c 
whichwe have obtained, c = 0.8096 i 0.0003, corresponds to the (0.1,O.S)phasepoint. 

We note that all the data must coincide on the r = 1 axis of figure 3 but, because 
of the X-type ordering for 0.9 s r d 1.0, we cannot rigorously extrapolate our data. 
However, it is striking that approximate continuation of the set of points in figure 3 leads 
to a value c = 0.815 on the Y axis. This is significantly below the accepted value, c = 0.82 
(see, e.g. ,  [9]) or the result of very-large-scale simulations in [11]. The largest simulation 
which we have performed, N = lo6,  L = 500 and r = 1, gave the result c = 
0.8177 i 0.0026. 

4. Disc contact network 

The contact network may be constructed uniquely from a disc packing by forming lines 
between the two centres of all pairs of discs which are separated by the sum of their two 
radii. In the case of computer-simulated packings, this scheme is implemented by 
defining a small but finite capture radius. Details of the disc packings are contained in 
the polygon distribution p, and the area law A, of the networks but comprehensive 
statistical analyses of large networks, using either algorithmic methods or image-pro- 
cessing techniques, are very expensive. Here we shall present basic information obtained 
manually from small networks which, in conjunction with the detailed packing data from 
large simulations, will form a guide to future processing of large-scale disc contact 
networks. Typical networks are shown in figure 4. They are not easily assessed in terms 
of a local defect structure and often display features, such as the recurring ‘fan’ pattern 
which appears in figure 4(b), which are characteristic of the formation mechanism of the 
disc packing and which indicate correlations between different cells. From graphical 
representations of disc contact networks, which correspond to the central portion 
( 2  x 103 polygons) of random disc packings, we have evaluated the polygon fractionsp, 
and the number fractions tyk of triangle cells formed by i ,  j ,  k type of discs in contact 
(i, j ,  k = 1,2) .  
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Figure4. Disccontact networks which correspond 
to sequential random close packing of binary disc 
mixtures: (a) x = 0.5, r = 0.85; ( b )  x = 0.5, f = 

0.25. 

Within the region of A-type and S-type disc configurations, we have obtained 

independent of the composition of the disc mixture. This value is consistent with elemen- 
tary arguments [13] for counting constraints in two-dimensional packings which contain 
no short-range order. We shall adopt a constant value z = 4.0 in what follows. 

Although we have not measured directly the polygon areas A, we can evaluate A3 
from experimental triangle fractions tyk : 

A, /R;  = f i r2 l ; l 1  + r=t$l2 + m t i Z 2  + f i t : 2 2 .  (4.1) 

For the contact networks which we have enumerated the fractions t j k  are in substantial 
agreement with weights given by the Dodds statistical geometrical model [14]. The 
Dodds weights t, for different n-sided polygons in a contact network, which correspond 
to a binary disc packing constructed under gravity, are given by the terms of the binomial 
expansion ( q l  + q2)" where 

and f,, z ,  are number fractions and component coordination numbers 

f l  = 1 - f 2  = 1/[1 + (1 - x)r'/x] (4.4) 

z1 = 2 + ( z  - 2 ) r /  ( f 2  + f l y ) .  (4.5) 

Average triangle areas calculated using the Dodds weights in equation (4.1) agree with 
the measured values to within the experimental errors and therefore we adopt this 
scheme for the polygon fractions because of its semi-quantitative systematic approach. 

Many two-dimensional random-network structures exhibit a linear relationship 
between the average area of a cell and the number of its sides. The empirical statement, 
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originallyforbiologicaltissuesonly, isLewis’slaw (see, e.g. [15]). This resultissupported 
by a maximum-entropy analysis [8] in which the distribution functionp, is chosen to be 
the most arbitrary one possible subject to the constraints (1.1) and a fixed total area. 
However, it was observed in [6] that the cell areas obtained from a disc contact network 
do not follow this simple scheme, i.e. A, > 2A3, and, as can be seen from the cell 
probabilities p3, p,, in their table 11, the distribution pn is more complex than the 
maximum-entropy distribution obtained using a linear-area law for which p, decreases 
monotonically with n.  The linear-area relationship must therefore be amended to 
account for unformulated constraints, etc. An  extended area law may be written: 

A n  = A3(n - 2)[1 + (A4 - 2A3)(n - 3)/2A3) (4.6) 

where the second term represents deviations from Lewis’s law and is small, about 0.1. 
In [6] an expression has been given for the average area of quadrilaterals formed by 

the centres of four discs in contact (using an assumption of uniformly distributed internal 
angles) and, although it is unlikely that disc packings constructed under gravity will 
preserve this angle distribution exactly, we may combine this result with Dodds weights 
t ,  to estimateA4. Within this approximation the coefficient (A4 - 2A3)/2A, has a value 
of 0.1027 for monosize discs and is strongly insensitive to variations in composition for 
r > 0.4 with no deviations greater than 1%. For r < 0.4, (A, - 2A3)/2A3 begins to rise 
sharply. 

c(x ,  r )  = nR:r2/2A3[r2 + x(1 - r 2 ) ]  

Rewriting (1.2) using (4.6), we obtain 

1 + (A4 -2A,) (z -2)  

The quadratic area law leads to an explicit dependence, on the second moment 

Xn2pn  

of the polygon distribution function, for the packing fraction of a random disc packing. 
Thus the details of the random close packing are associated with the width of the polygon 
distribution function for the corresponding disc contact network and we can write 

where Eis the mean number of sides per cell. We cannot make a quantitative assessment 
of equations (4.7) and (4.8). In general, the polygon distribution function of the disc 
contact network has a small, but finite, width for the random packing of monodisperse 
discs and becomes broader as impurities are included. Qualitatively, we may write 

n 

where w o  and w1 are unknown coefficients. Computation of expression (4.7) using 
equations (4.8) and (4.9) shows that the qualitative features of the packing fraction 
variations are primarily influenced by the choice of the coefficients w o  and w l .  In figure 
5 we have plotted c(x,  r )  against r forx  = 0.1,0.3,0.5,0.7,0.9,  A 4  - 2A3 = 0.2054A3 
with w o  = 0.1959 and w1 = 5.0 chosen to give c(x ,  1) = 0.8150 and c(0.9,0.75) = 
0.8139, respectively. The curves in figure 5 show the general features of the packing 
fraction variations discussed at the end of 8 3. Although the precise positions of the 
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Figure 5.  Packing fraction, calculated using a 
quadratic area law, plotted against size ratio for 
sequential random close packing of binary disc 
mixtures with x = 0.1 (curve A).  x = 0.3 (curve 

I '  I 0.3 0.5 0.7 0 . 9  B), x = 0.5 (curve C), x = 0.7 (curve D) and x = 

r 0.9 (curve E). 

features in figure 5 depend on z ,  the overall structure is unaltered by variations of z 
within the range we have measured. If we used the full expression for A 4  [6], the values 
of c at low rare  reduced. 

5. Conclusion 

The phase diagram for sequential random close packing of binary disc mixtures contains 
a large central region, where the configurations contain only short-range translational 
order, in which the packing fraction c falls within a narrow range 0.81 < c < 0.82. 
However, by using large computer simulations, in this region we can observe systematic 
dependence of c on the mixture composition. Significantly the packing fraction is 
reduced, from the value for sequential random close packing of uniform discs, by the 
introduction of finite amounts of smaller impurity discs and then rises again as the 
impurity concentration becomes large. These results indicate the existence of an opti- 
mum binary mixture composition which leads to a sequential random close packing 
which has maximum void space. These variations in the void volume cannot be neglected 
because the transport and mechanical properties of composite materials strongly depend 
on the geometrical and compositional heterogeneities [ 16,171, 

Within the contact network representation of disc packing, the packing fraction 
behaviour observed above is reproduced by assigning a variable width to the probability 
distribution function for network polygons. The broadening of this distribution can be 
seen qualitatively in graphical representations of small networks but, in order to obtain 
quantitative results for average geometrical properties, it is necessary to use accurate 
information relating to the second moment 

n 

which in turn requires the processing of large networks. A small composition dependence 
of coordination number and deviations from the Dodds statistical model must also be 
included in a quantitative scheme. The detailed computer simulation results will provide 
information for assigning the relative significance of these terms. Graphical patterns of 
the contact network reveal details of local ordering of the two species in binary mixtures. 
Although this effect has only a small influence on the overall network statistics, and 
therefore only a small impact on the packing fraction calculations, physical properties 
of binary disc mixtures, e.g. percolation effects [6, 161, are significantly affected. The 
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dependence of these correlations on the particular method of construction and on the 
mixture composition remain open questions. 

The phase diagram, for binary disc packings which are built under the influence of a 
strong unidirectional external field, has a close resemblance to that given in [2], for disc 
packings constructed using the Bennett algorithm. Although the details of the structures 
are different, the likeness suggests that the general form of the phase diagram for close 
packing of binary mixtures of hard discs is largely independent of the particular growth 
mechanism adopted. 

In the region of the phase diagram for which configurations contain significant 
translational order the packing fraction is dependent on system size. In the extreme case 
of monosize discs our results confirm those in [ l l ] .  We note that, for non-sequential 
random close packing of hard discs, computer simulations are restricted to system size 
N = lo4  [18] which is within the size-dependent regime for sequential simulations. 
Packing fraction results, c = 0.84, are significantly higher than those obtained in large 
sequential simulations. 

This approach can be extended to other disc size distributions and the large simu- 
lations also provide data concerning surface effects of growth, such as relative sizes of 
the active growth zones, which will be reported elsewhere. The results that we have 
obtained direct further research towards the formulation of constraints in terms of the 
moments of the polygon size distribution of the contact network, which in turn is closely 
related to the pore size distribution. The simulation results have identified regimes, at 
the edges of the phase diagram and for r < 0.25, in which translational order is a 
significant feature of the structure in sequentially deposited aggregates. 
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